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ABSTRACT

Periodic solutions are investigated of the set of second order

Hamiltonian equations -;R = V'(x) for x(t) e JW, where the function V is

even, has a certain monotonic behaviour on rays through the origin in i and

has superquadratic growth at infinity. It is proven that for T > 0 less

than the smallest period of the linearized system (if non-trivial, else for

all T), there exists a periodic solution of a special kind, a normal mode,

which has minimal period T, has large amplitude (tending to infinity as

T * 0) and which minimizes the action functional on a naturally constrained

set. If V has a direction of maximum increase this solution will be

characterized completely.

A condition for V - l- given, which is the same as in a multiplicity

reoult for the prescribed energy case, that provides the existence of at

least N distinct normal modes of minimal period T.

AMS (MOS) Subject Classifications: 34C15, 34C25, 58E30

Key Words: periodic solution, Hamiltonian system, variational methods,
natural constraints
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SIGNIFICANCE AND EXPLANATION

In this paper we look for a special kind of periodic solutions x(t) e

of the system of second order Hamiltonian equations -9 - V'(x). Assuming the

potential V to be even and having sufficiently rapid and monotonic growth on

rays through the origin in 1N, it is shown that for some, physically

interpretable, T* e (o,-] there exists for every T e (O,T*) a solution

with minimal period T. Such solutions have large amplitude, tending to

infinity as T + 0. Furthermore, although the action functional is not

bounded from below or above on the set of T-periodic functions, we shall

construct a naturally constrained subset such that the action functional

attains its, finite, minimum value on this subset at such a solution with

minimal period. This extremal characterization of these solutions may be

useful for numerical calculations.

Under a specific condition for V it will be show that there exist at

least N distinct normal modes with minimal period T.
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ON SMALL PERIOD, LARGE AMPLITUDE NORMAL MODES
OF NATURAL HAMILTONIAN SYSTEMS

E. W. C. van Croesen*

1. INTRODUCTION

In this paper we shall consider periodic motions of a system described by a set of

second order autonomous equations

-R = V'(x)

for the N-vector function x(t), where V is a potential energy function defined on

JP. The system described by (1) is a Hamiltonian system for which the Hamiltonian

H(x,p) = 1/2P'P + V(x), (x,p) e le x t ,

being the sum of kinetic energy and potential energy, is a so called natural Hamiltonian.

Our investigation of (1) will concentrate on finding and characterizing periodic

solutions which have an (arbitrarily) prescribed value of the period. More specifically,

we shall assume that V satisfies the following condition

(VO) V e C2 (RN,R), V(0) = 0 and V is even: V(x) = V(-x) for x e RN

The evenness assumption implies that it is possible, as we shall do, to look for a special

kind of periodic solutions, to be called normal modes (see [9] and the references therein

for a motivation of this terminology). These are periodic solutions of (1) for which the

trajectory in RN is a symmetric curve through the origin along which the motion

oscillates back and forth between the two endpoints of the curve, which are rest points for

the motion. These normal modes are completely characterized by a solution of a boundary

value problem (see e.g. [6]). In fact, let x be for some A > 0 a solution of

-5 XV'(x), t e (0,1)
(2)

x(0) ( 0

and define a continuation map C as

*Mathematical Institute, University of Nymegen, Toernooiveld, Nymegen, The Netherlands
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x~t) for t e to, i1
(3) Cx(t) :- odd continuation of the function ;(t) -

x(2 - t) for t e [1,2)

Then the normal mode corresponding to a solution x of (2) is given by the function

(4) x(t) :- Cx(t/ 5 ) ,

which is easily verified to be a smooth solution of (1) on all of R which has period

T - 46. Note that this normal mode will have T as its minimal period iff the solution

of (2) satisfies x(t) P 0 for t a 10,1).

Simple examples show that without further conditions on V no periodic solution with

arbitrary period will exist in general. Therefore consider the following (super quadratic)

growth condition:

(V) There exist numbers Y > 2 and R > 0 such that

V'(x)ox ) uV(x) > 0 for all x e R", 1Ix ;' R

Requiring only condition (V), Rabinowitz (14] (see also (13, 15]) showed that for any

T > 0 and any A > 0 there exists a solution of (1) which is periodic with period T and

which has sup norm larger than A. A simplified proof of this result for even or convex

potentials is contained in (83. In both cases nothing can be said about the minimal period

of such a solution.

In this paper we shall require an additional condition which is essentially a

monotonicity condition for the growth of V on all of any ray through the origin:

(V2) V(x) > 0 and V"(x)°x-x - VI(x).x > 0 for all x e R\(O}.

Assuming (VO)-(v2) to be satisfied it will be shown in section 2 that for any T > 0 less

than the smallest non-trivial period of the linearized system (if non-trivial, else for

all T) there exists a normal mode xT which has minimal period T, and that

IxTI 0 " as T- 0.
c
In (141 and (81 the periodic solutions were found using topological mini-max methods

for the action functional on the set of T-periodic functions in (14] and on certain

naturally constrained subsets in t8]. Here we shall show that it is possible to define a

naturally constrained set NT such that the normal modes xT are characterized as the

-2-
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elements for which the action functional is minimized on this set IT- For the solution of

the boundary value problem (2) with A (T/4)2 which defines this normal mode via (4)

this naturally constrained minimization problem reads

o 1(5) in~j ~j2 - )V(x), x ,(0, , k X ~ -)V(x).X1 0
00

In section 3 we shall consider potentials V which have a direction of maximum increase,

i.e. for which there exists a vector e e sN , the unit sphere in 1N , such that on each

sphere with radius r > 0, V attains its maximum value at the point re. For such

potentials, which include the class of similarity, and in particular, homogeneous

potentials, it is shown that the solution of the naturally constrained minimization problem

(5) provides a similar normal mode, i.e. a normal mode which has a trajectory that lies on

the ray through the origin in the direction e.

In section 4 we shall consider some multiplicity results for normal modes with minimal

period T. For any similarity potential the existence of N similar normal modes in

different directions of "stationary" increase of V will be proven. In case V is not a

similarity potential, a condition will be given that guarantees the existence of at least

N distinct normal modes with minimal period T. This condition, unlike (V1), (V2), which

are conditions on the growth of V on rays through the origin, is a condition on the

geometry of the level sets of V. A condition of this kind has been used by Ekeland and

Leery [5] to prove the existence of at least N distinct periodic solutions of the same

prescribed energy (instead of prescribed period) and precisely the same condition provides

the existence of at least N normal modes of (1) with prescribed energy, see [7], or with
1

prescribed normalized potential energy (i.e. f V(x)), see (9]. The result to be
0

obtained in section 4, theorem 4.3, seems to be the first multiplicity result for solutions

with minimal period for euperquadratic potentials (for the subquadratic case, see

(1, 3, 81).
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2. THE NATURALLY CONSTRAINED MINIMIZATION PROBLEM

Zn this section the naturally constrained minimization problem will be introduced in a

precise way and is used to obtain the existence of normal modes of prescribed, small,

minimal period.

We start to introduce some notation and recall some standard results that are needed

further on. Let H1 :- fI(( 0 ,1],RN) be the Sobolev space of N-vector functions

N
x : (0,1] + R which are, together with their generalized first derivative, square

integrable. H, is a Hilbert space which is continuously embedded in the set

C:- C0 ([0,1],R
N ) of continuous vector function. Therefore, the set

r : {x e f11 x(0) - 0)

is neatly defined and, being a subspace, 2 is a Hilbert space itself. Since

(2.1) f.2 2 f x 2

where here and in the following, f denotes integration with respect to t over (0,I),

we can, and shall, take I I defined by Ixi :- {f c2I/2 as a norm on E (equivalent to

the usual HI-norm). With I the norm of C, Ixl0 :. max jx(t)l, we also have
C0  C0  te[oi1

(2.2) X c0 4 lxl for all x e z

Moreover, E is compactly embedded in CO: any sequence {x I C E with Ix I uniformly
n n

bounded, has a subsequence {Xn,} which converges weakly in E and strongly in C0 .

For any X > 0 define the functional * on E by

(x f ~jx _ XV(x)11, x e z

Note that * is well defined, is not bounded from above and is twice differentiable (if

V e C2 (fN)) on E. The first result states that looking for critical points of *, on

Z is a variational formulation of the problem of finding solutions of (2), but that, in

the case we are considering, any non-trivial solution of (2) is not simply a (local)

minimum of X on E.

-4-



Proposition 2.1.

Assume V e c2 (RN) and let X > 0. Then any function x e E is a classical solution

of the boundary value problem (2) iff x is a critical point of on E. Furthermore,

if V satisfies (VI) then *, is not bounded from below on E and if V satisfies (V2)

then any non-zero critical point of * is not a local minimum of 0 on E.

Proof: The first statement is a standard result from the classical calculus of

variations. Note in particular that the condition *(1) 0 results as a natural boundary

condition from the variational formulation. Next, let S denote the unit sphere in

E : S :- (x e E : Ix = I}, and consider for fixed y e S the function g : R+ + R

defined by

(2.4) g(p) := *l(Py), P > 0

We shall show that as a consequence of (Vi), g(o) + - as p + , which implies that

is not bounded from below on E. To that end, observe that by integrating the

inequality in (V1) it follows that for some constants a > 0 and b ( 0:

V(x) > a~x4 + b for all x e R

Therefore

(0y) P2 VPyj< _I02- api, f ?jlj - b
12 1241x(Py) = p - A /V oyi 2 p / ll -

and, since V > 2, the result follows. Finally, consider the second variation of

at x in the direction E e E, given by

A(x;F) = (C2 _ XV"(x)}.

Then, for x F 0, condition (V2) immediately implies that Q,(x;ex) is negative for all

E e R\{01 if x is a solution of (2), which shows that x is not a local minimum of

I, on E.

From now on we shall assume that V satisfies (VO)-(V2). In order to explain the

introduction of the natural constraint NA below, consider for fixed y e S the

function g defined by (2.4). The behaviour of g at 0 and at w is known and

independent of y e s and X > 0

(2.5) g(0) = 0 and g(p) + - as p +  ,

but for finite values of p the behaviour of g depends on the detailed behaviour of V

-5-



and on the choice of y e S and A > 0. However, condition (V2) implies another global

property of g, independent of y e S and of A if X > 0 is sufficiently small. To

investigate this, consider the first and second derivative of g. At any critical point

0 > 0 of q, g'(;) = 0, the second derivative is given by

g (p;) . X2 (V(y).;y - V_(;Y);y.py)

Hence 9"(;) < 0 because of (V2), which implies that if g has a critical point ; > 0,

then ; is the unique positive critical point of g and g attains its global maximum at

o. We shall now show that for A > 0 sufficiently small and any y e s, q has indeed a

positive critical point. Given (2.5), it suffices to show that there exists A* > 0 such

that for any A e (O,A') q is positive for p > 0 sufficiently small. Since g e c 2 ,

with g(O) - 9'(0) - 0, this will be the case if g*(0) > 0. Define

- if V"(0) 0

(2.6) T* := 4V A. , and X* :

!') 2 -1if V'(o) V 0

where a is the largest (positive) eigenvalue of V"(0). Note that, in case V"(0) 7 0,

T* is the smallest (non-trivial) period of the solutions of the linearized system

-9 - V"(O)x .

Using inequality (2.1) in the expression for g"(0), it follows that

9.(O) - , {,2 _ AV"(0)yyl ) J {()21 - ,V"(O))yoy > 0 for A e (O,A*)

where IN  is the identity matrix in 1P. Hence, for A e (O.A*), g has for any y e s

a unique, positive critical point at which g is maximal.

Now define the set NX as

(2.7) NA :- x e E : x 1 0, j ;- _ A J V'(x).x .

In view of the foregoing, for A e (0,X*), N can also be described as

(2.8) NX . (;y ; y e S, p Is the unique solution of max *X(Py)).
D>0

By taking the L2 -innerproduct of the equation in (2) with the function x, it is clear

that any non-trivial critical point of *AX on E belongs to NA. The next result states

that it is also true that any critical point of the restriction of *A to NA is a

-6-



critical point of P on E. (For a special class of scalar equations, a constraint like

(2.7) has been used foi the first time by Nehari [111).

Proposition 2.2.

Let V satisfy (V0 )-(V2 ) and let x e (0,x*), where X* is defined in (2.6). Then

the set N, given by (2.7) is a smooth, symmetric manifold in E which has codimension

1. Moreover, NX is a natural constraint for the functional #, on E, i.e. any

critical point of the restriction of * to NA is a solution of the boundary value

problem (2).

Proof: Define a functional 0, on E by

(2.9) 6 X(x 5 :m f (;t2 _ XV.(x).xl

Then is differentiable on E and the set N is given by

N A {x e E : *1 (x = 01\(O}. For x e NA  it is readily seen that

< (xS,x> = X f [V'(x).x - V"(x)x-xl < 0, from which it follows that f;(x) * 0. Hence,

at every x e NV the tangent space to N1  at x has codimension 1. Next we show that

x S 0 is an isolated point of the set {x e E : *(x, = 0), which will imply that NX is

smooth. To that end, let m > 0 be any number if V"(0) S 0, and let m > a if a is

the largest eigenvalue of V"(0) 0. Then there exists a p > 0, depending only on m,

such that

V'(x)Sx m ,2 for all x e l, 1xI < 0

and P(m) * 0 as m 4 a. With inequalities (2.1) and (2.2), it follows that if x eN X

and Ixf 4 p, then

(1)2 f x2 < f 2 j A m f x
2 ,

so that x e N1  must satisfy IxI > p if I < .m 1 . In case V"(O) 7 0, p + 0 as

I+ X*, but, for future reference, note that for any C > 0 there exists a number po'

such that

(2.10) N'f {x E f. Ix = for X e (O,A* -

Finally, to show that NA  is a natural constraint, the multiplier rule states that a

critical point x of X on N, satisfies for some number v e R the equation

- V'(x) = V{-2R - XV'(x) - V"(x)x}•

-7-



and the boundary condition x(O) - A () - 0. Multiplying this equation by x and

integrating over (0,1) readily shows that V 0 because x e NA and V satisfies

(V2). Hence, any critical point of lA on N satisfies (2), which completes the proof. *

We are now in a position to define for given A > 0 the naturally constrained

minimization problem, the value of which will be denoted by c(A):

(2.11) c(A) - inff*X(x) x e N X}

Remark 2.3.

In view of the characterization (2.8) for , it is easily seea that for

A e (0,A*) (2.11) is an explicit minimization formulation a mini-max problem for

on all of Z:

(2.121 c(A) - inf max (PY)

yes p0>

This clearly demonstrates the role of the natural constraint NA  in characterizing some of

the critical point of lP which are of saddle point type on E as constrained minima for

*Won AX. a

Proposition 2.4.

Let V satisfy (VO)-(V2) and let A* be defined as in (2.6). Then c(A) is finite

and positive for all x e (0,A*) and c is monotonically decreasing on (0,A*).

Furthermore, for each A e (O,Ae), the minimization problem (2.11) has a solution x,

and IXAI 0 as A + 0.
C

Moreover, any minimizing sequence for (2.11) has a subsequence which converges in

I I-norm, and hence uniformly on [0,1], to a solution of (2.11). a

Before giving its proof, let us use proposition 2.4 to obtain the existence of small

period, large amplitude normal modes for equation (1).

Theorem 2.S.

Let V satisfy (VO)-(V2) and let T* be given by (2.6). Then, for any T e (0,T*)

equation (1) has a solution xT which is a normal made with minimal period T. Moreover,

IXT 0 + as T * 0, and xT  corresponds via the transformation (4) to a solution x

2
of the naturally constrained minimization problem (2.11) for A - (T/4)
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Proof. Let xT denof t'- normal mode which corresponds via the transformation 41 to a

S-lutilon x, of (2.11). Since IX TO = x; 0 , it only remains to be shown that x
CC

has minimal period. Therefore, suppose that x is any solution of (2, for which the

corresponding normal mode does not have minimal period. Then there exists some integer

k e N, k ) 3 and k is odd, such that the function y defined by y(t) : x(t/k),

t e [0,1], satisfies y(O) = (-) 0 (because k is odd) and the eauation in (2) with

X replaced by X/k
2 . 

Hence y e N /k2, and by the definition of the functirn

c : c(X/k
2
) /k2(y). As is easily seen /k 2 (Y) k2 '((x), from which it follows

that

(2.13) c(k/k 2) 4 1

k

Consequently, if x were a solution of the minimization problem (2.11), it would follow

that c(XA/k2 ) c(X), in contradiction with the fact that the function c is
2

k

monotonically decreasing. This shows that xT has minimal period T. R

Proof of Proposition 2.4.

On the set NA the functional 4, can be written as

(2.14) I (x) = A f W(x) ,

where W(x) V'(x)-x - V(x). Because of condition (V2 , W satisfies W'(x).x > 0
2

which implies that for any x # 0 the function p ---> W(Px) is monotonically increasing

for p > 0, and hence W(x) > W(0) = 0 for x # 0. This shows that c() ) 0. That

c()) > 0 follows as soon as the existence of a solution has been proved because 0 0 N1 .

To show that c is monotone, let 0 < XI < X2 
< 
X*

' 
and let x1 ( 0) be a solution of

(2.11) for X = X1" Then x, e NXI and for some p # 1, P > 0, px 1 eN X2 Because of

(2.8) it follows that 1P (Pxl) 
< 

p1 (xl)" Since CA1(x) > (x) for all x # 0, the
1 1 1 2

result follows easily: c(A 1 ) = > (x
l  

I ) 
> 
$A2(Px) ) c(N 2 ). Next, let XI be a

solution of (2.11). To show that !Ixj 0 * - as A - 0, suppose, on the contrary, that

Ix.1c0 is uniformly bounded. Then f V'(xX)'xX is uniformly bounded and since x, e

it follows that Ix~i X 0 as X + 0, contradicting property (2.10).

-9-
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It remains to prove the existence of a solution of (2.11). First observe that as a

consequence of condition (VI), for some a e a

(2.1) (x) j *2 _ I V,(x).1 - a (I- ) k2 +a for xe
2 12 it

now, let {x be any minimizing sequence, i.e. xn e M for all n e N and
n

*P(xn) c() as n i. Since u > 2, it follows from (2.15) that IXnI is uniformly

bounded. Hence, some subsequence, again to be denoted by {Xn ), converges weakly in 3

and in CO to some x e E. We shall show that x is a solution of the minimization

problem (2.11).

Since the norm functional Is lower semicontinuous with respect to weak convergence,

1xn 4 lii inf Ix n, and since (x n ) converges in CO , 3 V(xn) n 3 V(x) and

VI(xn).xn V(x)*x as n * . Consequently *,(x) c(X) - li *A (xn) nd

*A(x) 4 0 where * is defined by (2.9). We shall show that x 0 0 and that

(x) - 0, i.e. that x e N. Indeed, that x # 0 follows since x n  A and x. + 0

in C0 would imply Ix nI 0, contradicting the fact that 0 is an isolated point of
n

N. Furthermore, if 0(x) < 0, then there exists a I > 0 such that 0(0x) - 0, and in

fact p < 1 because of the behaviour of the function of,-> *,(Px). Then, by (2.14) and

the monotonicity of W:

*(Ox) - X j W (Ox) < A I W(X) - lim X I W(Xn) - 'ia *A (X n c(N)

whereas, by definition of c(C) *0(Px) ) c(A). This contradiction implies that

#(x) - 0. From this it follows that Ix I + 1xl, which, together with the fact thatn

xn converqes weakly to x, implies that xn converges strongly in E: Ix n - xl * 0 as

n 4-. From these results, it is immediate that x is a solution of (2.11) since

*(xn) *n(x) as n * and thus *).(x) - c(A). This completes the proof. a

-10-



3. SIMILAR NORMAL MODE

he simplest normal modes are those of which the trajectory in 31 is on a straight

line through the origin. Such periodic solutions are called similar normal modes (cf.

[16]). Stated in another way, a similar normal mode in the direction

e e sN - ] 
:= {e e R : lei - I) is related via (4) to a solution x of the boundary value

problem (2) which is of the form

(3.1) x(t) - a(t)e

where Q(t) is a scalar function. In order that (3.1) is a solution of (2), the vector

e has to satisfy

(3.2) V'(0e) - (V'(e).e)e

and a has to be a solution of the scalar equation

(3.30 - V'(ae)-e, a(O) () = 0

Note that the corresponding normal mode has minimal period iff d(t) 0 0 for t e (0,1,

i.e. iff a is monotonically increasing (or decreasing) on (0,1].

For general potential V there will be no direction e e SN -  such that (3.2) is

satisfied for all a > 0. If V happens to have such a direction, as is for instance the

case if V is a similarity potential (see section 4), conditions (VO)-(V2) will guarantee

that (3.3) has a solution, as we shall see.

Definition 3.1.

V is said to have a direction of stationary increase e e sN -1  if for each r > 0,

re is a critical point of the function V on the sphere rS N - . V is said to have a

direction of maximal increase e e 5N- 1 if for each r > 0:

(3.4) V(re) = max V(x) .

xerS
N- 1

As is easily verified, V has a direction of stationary increaae e SN -  iff (3.2) is

satisifed for all a > 0, and if e is a direction of maximal increase, then e is a

direction of stationary increase.

For e e sN - 1 consider the set El :- {a : (0,1] + R : se z )1, which is nothing but
the usual space of scalar H1-functions a with a(0) - 0. In a natural way, the

-11-



restriction of the functional x and the set N, to functions ae e E leads to the

functional

(3.5) *X,e(a) :- (ae), a e E

and to the set

(3.6) NA e :- {a e : as e NO

We shall consider the minimization problem

(3.7) inf{*,e(a) : a e N,e }

This minimization problem is for N - 1 of the form considered in section 2, (2.11), with

a potential V. defined by

(3.8) Ve(a) : V(ae), a e R

and the results of that section may be applied.

Proposition 3.2.

Let V satisfy (VO)-(V2) and let T* be defined by (2.6). If e e N- 1 is any

direction of stationary increase for V, then for every T e (0,T*) there exists a

similar normal mode xT in the direction a which has minimal period T, and

IXTI + as T - 0. This similar normal mode is related via (4) to a solution xx of

(2), where xA - axe and a is a solution of the minimization problem (3.7) for

X - (T/4)
2
.

Proof. We investigate the minimization problem (3.7). Since Ve(a) - V'(ae).e and

V"(a) - V"(ae)ee, it is easily verified that the potential Ve  satisfies conditions

(VO)-(V2) because V does. Next we define the values X* and T* for problem (3.7):

if V"(O) - 0

T e :- 4 / A e ' A e :2 -w -1 i :o
(2[e(0' i V) p~0

Since V"(0) - V"(0)e*e, it is clear that A* ) X*. Consequently, for any
e e

T e (0,T*) C (0,T:) we can apply the results of proposition 2.4 and theorem 2.5 for the

special case N I and potential Ve . In this way we find a solution a of (3.7) to

which there corresponds a normal mode with minimal period T. Since a satisfies the

boundary value problem (2) for Ve , a is a solution of (3.3). Since e is a direction
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of stationary increase, (3.2) is satisfied, so that aXe defines via the transformation

(4) a normal mode xT in the direction e with minimal period T. Moreover, since

JaQX + as A + 0, it follows that 1XT1 0 as T 
+ 

0. ac O TO

Remark 3.3.

The result of proposition 3.2 can also be stated as follows: If e is a direction of

stationary increase for V, the functional *, attains its finite, minimum value on the

set {ae e N X: a e E 1, which set is a natural constraint for the functional *.

The next result characterizes the solution set of the naturally constrained

minimization problem (2.11) in case V has a direction of maximal increase.

Proposition 3.4.

Let V satisfy (VO)-(V2) and let X e (O,X*) where X* is given by (2.6). Assume,

moreover, that V has a direction of maximal increase. Then the solution set of the

minimization problem (2.11) consists of all the functions x, a .,e where e is any

direction of maximal increase and a i any solution of (3.7).

Proof: Let e e SN- 1 be a direction of maximal increase and let x be a solution of

(2.11). We consider the "normalized" radial projection p of x onto the direction

e : p(t) := plx(t)le, where p > 0 is choosen in such a way that p e N,. Then

=P( nje and f P 2 with equality only if x(t) and i(t) are parallel for

all t e (0,1], i.e. only if x(t) = 0(t)Z for some e e s 
N-

1 and some scalar function

S. Since e is a direction of maximal increase, it holds V(p(t)) > V(px(t)), so that

4(P) < _IP2 fj 2 - f V(Px) _ 4, (Ox) b( x)I 2 X X

where the last inequality follows since x e NA and because of the characterization (2.S),

which also shows that it is an equality iff P I. Since x is a solution of (2.11), and

p e NA we also have A(x) 4 lA (p). Therefore it follows that p 1 1, that

x(t) = Ix(t)Je and that V(lx(t)(;) - V(Ix(t)Ie). This shows that e must be a direction

of maximal increase for V, and the result of the proposition follows easily. a
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4. MULTIPLE 1OR14AL MOD2S WITH GIVEN MINIMAL ff100D.

This section deals with two different multiplicity results. The first result is for

the special class of potentials for which different level sets are simply radial homotetic

transformations of each other. These potentials, to be called similarity potentials, are

of the form

(4.1) U(x) - (j(X))

where r is a function defined on It and , UP-R is the gauge of some domain

D C a". More precisely, D is any simply connected bounded domain in RM with the origin

in its interior and with smooth (C 2 ) boundary 30. Moreover, D is strictly starshaped

with respect to the origin, i.e. any ray issuing from the origin intersects the boundary

3D in precisely one point, and at the point of intersection the normal to 3D in not

perpendicular to the ray. Then the gauge j of D (the Minkowaky function) i. defined as

J(x) t- inf(A > 0 : x e AWD, x e R

and j e C 2 (N\{O),R+), J(x) - Iiff x e DD. Since j is homogeneous of degree 1, it

follow that J'(x),x - j(x) and J"Cx)x-x - 0 for all x e 3P. Using this, it is easily

verified that U satisfies condition (VO)-(V2) if D in a symetric set and if F

satisfies the condition (VO)-1V2) for N - 1.

A particular subset of the class of similarity potential consists of the homoqeneous

potentials which are of the form (4.1) with F some homogeneous scalar function:

F~r) - IrI"F(

of acme degree ii > 0. Note that conditions (V)-(V) are satisfied iff ii > 2 and then

U e 2(A

The first multiplicity result is as follows

Theorem 4.1.

Let U be a similarity potential which satisfies (VO)-(V2) and let Ta be defined by

(2.6). Then, for any T e (0,T*) there exist at least N distinct similar normal modes

with minimal period Ti moreover, at least one of them corresponds via the transformation

(4) to a solution of the naturally constrained minimization problem (2.11) for X. (T/4) 2.



This result is an immediate consequence of propositions 3.2, 3.4 and the following

lemma.

Iemma 4.2.

Let U be a similarity potential of the form (4.1) with j the gauge of a symmetric

domain and F monotonically increasing on R+. Then U has at least N distinct pairs

Iei f i = 1,...,N of directions of stationary increase and at least one pair are directions

of maximal increase.

Proof: Since the gauge j is an even function and C
2 

on the unit sphere S
N-

1, a

standard result from Ljusternik-Schnirelmann theory (see e.g. [12]) provides the existence

of at least N distinct pairs ±ei, i 1,...,N of critical points of j on S 
N - 1 

i.e.

these points satisfy

JI(e) = a. for a = j(e)

and j is maximal on 
N - 1 

at least at one pair, say ±e, J(e 1 ) - max J(e).

For every a > 0, U(ae) = F(j(ae)) - F(j(e)), and U'(Ge) - QF'(aj(e))j'(e), so

that U'(ae) - (U'(ae).e)e for e - ±ei, i = 1,...,N. Hence all the directions ±ei are

directions of stationary increase. Furthermore, since F is monotonically increasing.

teI are directions of maximal increase:

F(j(re1 )) - F(rj(e 1 )) - max j JW - max F(J(x)) a

xerS xerS

The second multiplicity result of this section deals with potentials that satisfy, besides

conditions (VO)-(V2), an additional condition on the geometry of the level sets. This

condition states that all the level sets of V can be squeezed between two balls centered

at the origin that have a fixed ratio of their radii. It is interesting to note that a

condition of this kind, together with a convexity assumption, has been used by Ekeland and

Leary [5] and in [7] to obtain the existence of at least N distinct periodic solutions,

or normal modes, which have the sme value of the energy (instead of the same period), and

in [9) to obtain the existence of at least N distinct normal modes of the same normalized

potential energy (f V(x)). This condition reads:
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(M3) There exists a function F defined on 3 which satisfies conditions (VO)-(V2)

for N - 1 and a constant a @ [1,3) such that V satisfies

(IxI) - V(x) 4 F(aIxI) for all x e

Theorem 4.3.

Suppose V satisfies (VO)-(V3) and let T* be defined by (2.6). Then, for any

T e (0,T) there exist at least N distinct normal modes xT of (1) with minimal

period T, and each of these satisfies IxT 4 .0 as T + 0.

Proof.

The proof is based on the following observations. For any solution ; of (2) for

which the corresponding normal modes does not have minimal period T - 46, it follows

from the proof of theorem 2.5, in particular from (2.13), that *A(,) satisfies

*X (;) , 9c(1/9). Since c is a monotonically decreasing function on (0,)*), the

interval c(X),9c(X/9)) is non-empty and, consequently, any critical point x of on

N, for which

(4.2) Y(x) < 9c(1/9)

defines a normal mode that has minimal period T - 4rX. The existence of infinitely many

distinct critical points of * on NA will be a consequence of Ljusternik-Schnirelmann

theory and will be proven in part (i) under the assumptions (VO)-(V2). In part (ii) we

show that because of condition (V3) at least N (pairs of) critical points satisfy (4.2),

each of which has cO-norm tending to infinity as A + 0, which will prove the theorem.

Mi) Since V is even, *x is an even functional on the symmetric set NA. The

presence of this Z2-invariance allows the application of Ljusternik-Schnirelmann theory if

a certain compactness condition, the Palais-Smale condition, is verified. Under the

assumptions (VO)-(V2) for V, in particular because * satisfies (2.15) on N,, the

verification of this condition is rather straightforward and we shall omit it here.

Summarizing the result of this theory (see e.g. Berger [2]), let ind(A) denote the genus

of a symmetric, compact set ACN, defined as (cf. E41, 110]) ind(A) is the smallest

integer k e X U 10) for which there exists an odd, continuous mapping A + Rk\{0), and

ind(A) - if no such mapping exists. The Ljusternik-Schnirelmann theory then gives the
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following result: If E is a symmetric, compact set of Nx with ind(r) - n e v and if

b ) *1(E), then there exist at least n pairs of distinct critical points ±xi,

i - 1,...,n, of *, on N which have critical value 4 h.

Since Nl has subsets of arbitrary large index, this shows that for any

X e (O,A*), * has infinitely many critical points on N . Of course, not all of these

solutions of (2) provide distinct normal modes.

(ii) From the sumxary of the Ljusternik-Schnirelmann theory above, end the

introductionary remarks of this proof, the theorem follows as soon as we can find some set

Z with ind(t) - N such that

(4.3) * X W < 9c(A/9).

To that end, let V1  and Va be potentials defined by V1 (x) - F(Ixl), and

Va(x) -F(axj). Consider for V, and Va respectively, the corresponding functionals

X,> and sets NA , NX and the corresponding naturally constrained minimization

problems (2.11), the values of which will be denoted by clI() and c (a) respectively.a

Since Vl(x) 4 V(x) 4 Va(x) on 0 , it follows that ) and, e.g. from

the characterization (2.12),

C Il M ) CM ) Ca(1).

Because of the special form of the potential Va t the function ca  is related in a simple

way to the function cl, explicitly

C (A) - a-2 C( 
)

a 2

Hence, (4.3) will certainly be satisfied if

(4.4) * X) < 9c (A/9) - 9a2 c (As 2/9)

We shall now construct a set E for which *A(E) C c1 (X), which will imply (4.4) since

a ( 3 and c is monotonically decreasing on (O,As).

To that end, let X e (O,X*) and let i be the solution set of the minimization

problem (2.11) for V1 . Since V1  is rotationally symmetric, any e e SN - I is a

direction of maximal increase for VI , and E is given by (proposition 3.4)

where G is independent of e, and is, for any • e SN-1 , a solution of the minimization
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problem (3.7) for V1 . For any ;e e , there exists a unique number p > 0, depending

only on e 8e S 
' , 

such that pas e N Then the set

I. (Ole 8 N, S * e 
)

is a compact, sysmetric subset of N and has ind(E) - N. Since i , it follows

that Poe) < #(put). Furthermore, because ae is a solution of the minimization

problem for V 1, the function P 1 --. # (ose) is maximal at P 1. Therefore

#A(006) C Y (pOO) 4 e(se) - cIM)

which shows that *A(Z) < c Il(). This gives for any e e (0,X*) the existence of at

least N pairs of critical points of * A on N to which their correspond at least N

distinct normal modes with minimal period T - 4I5.

Since each of these critical points x. belong to NA, it follows as in the proof of

proposition 2.4, that IxAX 0 * * as X 0, which completes the proof. 5
C
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